

Agile Methods and Request for Change
(RFC): Observations from DoD
Acquisition Programs

Mary Ann Lapham
Michael Bandor
Eileen Wrubel

January 2014

TECHNICAL NOTE
CMU/SEI-2013-TN-031

Software Solutions Division

http://www.sei.cmu.edu

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract

No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-

ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent

AFLCMC/PZM

20 Schilling Circle, Bldg 1305, 3rd floor

Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING

INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE

OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,

OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-

low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely dis-

tributed in written or electronic form without requesting formal permission. Permission is required for

any other external and/or commercial use. Requests for permission should be directed to the Software

Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon Universi-

ty.

DM-0000792

CMU/SEI-2013-TN-031 | i

Table of Contents

Acknowledgments vii

Executive Summary ix

Abstract xiii

1 Introduction 1
1.1 Approach 1
1.2 Contents of This Document 2

2 “New” View of Acquisition Life Cycle 3
2.1 Current Acquisition Life Cycles 3
2.2 Acquisition Life Cycle vs. Software Development Life Cycle 5
2.3 Sample Approach to Harmonizing the Software Development Life Cycle and the

Acquisition Life Cycle Framework 7
2.4 Addressing the Differences in the Life Cycle Milestones and Reviews 9

3 Performing Effective Technical Evaluation in the Iterative/Agile Environment 15
3.1 Technical Evaluation Participants 15
3.2 Cultural Adaptation to Iterative Methods 15
3.3 Collaborative Environment 17
3.4 Common Areas of Contention: Systems Engineering and Test 19

3.4.1 Evaluating Systems Engineering Estimates 20
3.4.2 Evaluating Test Engineering Estimates 20
3.4.3 Using Actual Data as a Basis of Estimate 21

3.5 Oversight and Insight Implications 22

4 Assessment of Contractor Estimating Methodology 24
4.1 Methodology Documentation Review 24

4.1.1 Work Breakdown Structure and Skill Mix 25
4.1.2 Estimating Methodology 26
4.1.3 Additional Resources 28

5 Conclusion 31

Appendix A Evaluation Question Checklist 32

Appendix B Acronyms 35

References/Bibliography 37

CMU/SEI-2013-TN-031 | ii

CMU/SEI-2013-TN-031 | iii

List of Figures

Figure 1: DoD Defense Acquisition Management System - Single Step Acquisition (2008) 3

Figure 2: DoD Defense Acquisition Management System - Evolutionary (2008) 3

Figure 3: BCL Based Acquisition Framework (2011) 5

Figure 4: Acquisition Life Cycle and Software Development (Example) 6

Figure 5: Program Decomposition 7

Figure 6: Program Decomposition With Major Reviews 8

CMU/SEI-2013-TN-031 | iv

CMU/SEI-2013-TN-031 | v

List of Tables

Table 1: Progressive Development Activities 9

Table 2: PMO Options Supporting Iterative/Incremental Development 11

Table 3: Comparison of Iterative with Traditional DoD Cultural Elements 16

Table 4: Questions to Ask When Evaluating Iterative Proposals 32

CMU/SEI-2013-TN-031 | vi

CMU/SEI-2013-TN-031 | vii

Acknowledgments

The authors wish to thank Mr. Blaise Durante, the former Air Force Deputy Assistant Secretary
for Acquisition Integration (now retired), for his continued support of SEI and this project. This
support allowed the authors to produce a third report addressing another topic of interest to DoD
acquisition offices and development organizations that are currently pursuing or are contemplat-
ing pursuing acquisition strategies that employ one or more elements of a set of incremental de-
velopment methods commonly termed “Agile methods.”

In addition, the authors would like to express our appreciation for all those who reviewed this
technical note. Your insights were invaluable. We extend our sincerest thanks to the following
SEI people:

Robert Ferguson

John Foreman

Harry Levinson

Suzanne Miller

William Novak

David Zubrow

CMU/SEI-2013-TN-031 | viii

CMU/SEI-2013-TN-031 | ix

Executive Summary

Today’s program management office (PMO) realizes that its typical methods for evaluating tech-
nical proposals resulting from Requests for Changes (RFCs) are based on traditional government
methods for independent cost estimation. These traditional methods are not well suited to provide
a relevant evaluation of contractor estimates based on an iterative or agile development approach.
Iterative development estimation uses a just-in-time approach which tends to start with a high-
level relative estimate that is refined to create detailed absolute estimates as more is learned about
the operational context and user needs. Traditional methods typically employ mainly absolute
estimates from the beginning. Thus, the expected amount of detail usually provided by traditional
methods early in the negotiation of RFCs may be missing in iterative estimates.

This technical note is the product of case studies of actual Department of Defense (DoD) pro-
grams (program and contractor identifying information have been redacted) whose contractors
leverage agile methods. The information was gathered during our review of Requests for Change
(RFCs), reports, and contractor CDRLs and through discussions held with Program Management
Office (PMO) staff to gain an understanding of the challenges and miscommunications that can
occur when evaluating technical RFC proposals in an agile environment. Many of the challenges
faced were not necessarily unique to agile methods. However, the problem solving approach to
these issues was complicated by the mismatch of expectations by the PMO who were coming
from deep waterfall backgrounds and the contractor who had made the shift to the agile software
development methodology. This technical note describes challenges uncovered on the review of
Request for Changes (RFCs) after the beginning of program execution.

Confusion often occurs when the program office tries to interpret iterative activities relative to the
traditional DoD acquisition life cycle framework. There seems to be a common misunderstanding
that the software development methodology must mirror the acquisition life cycle. From a statuto-
ry perspective, the acquisition life cycle is, in fact, software methodology “agnostic:” it does not
prescribe a traditional waterfall-based engineering approach. Problems occur when trying to over-
lay “traditional” acquisition milestone events directly atop software development methodologies
that utilize smaller and more numerous work units, without understanding the relationship be-
tween those work units and the milestone events. This is where the program office needs to be
very aware of the execution of the development method and the differences that iterative devel-
opment creates.

There are three possible approaches to synchronizing traditional milestones with iterative devel-
opment. They are

• The PMO uses the major milestone events (e.g., PDR and CDR) in each block as traditional
milestone events (little acknowledgement of iterative concepts).

• The PMO participates in each progressive review throughout the iteration (great acknowl-
edgement of iterative concepts).

• The PMO has technical staff participate in each progressive review and the major milestones
become a management level review (a hybrid approach).

CMU/SEI-2013-TN-031 | x

Each approach has advantages and disadvantages. Selected advantages and disadvantages will be
addressed in this technical note.

A key finding in reviewing the technical evaluation process is that many of the same tasks execut-
ed during traditional estimation evaluation of RFCs still need to be performed when evaluating
estimates created using iterative methods. The focus of the evaluation will be slightly different
and will necessarily take into account the maturity of each iteration and the associated software
and documentation. This shift in perspective is required to align the review with the shift in the
underlying culture or environment created by the iterative method.

The organizational structure, leadership style, rewards system, communication models, decision
making models, and staffing models are likely to be different in an iterative environment versus a
traditional DoD environment. Each of these elements still needs to be addressed but the context
will vary depending on the environment. For instance, communication in an iterative environment
includes a variety of interim reviews that focus on just the software being developed in that itera-
tion, as opposed to the large reviews seen in the traditional environment where the entire project is
the focus. Additionally, documentation in the iterative environment tends to be user and maintain-
er-focused and represents “just enough” to promote understanding, with the overall documents
maturing as they progress through successive iterations (“just enough” will vary from situation to
situation depending on the needs and regulation requirements of the project [Lapham 2010]). In
the traditional environment, drafts of documents are produced for the entire project (that attempt
to be complete prior to ensuing tasks), are labored upon in significant detail, and then revised and
refined as the project progresses. Some of these are obviated when the software is actually pro-
duced, and all of them are subject to becoming obsolete as more is learned about the operational
context and actual operational need that informs the software acquisition.

While some level of collaboration between the program office, contractor(s), and operators is re-
quired on any program, iterative styles expect a higher level of collaboration. This collaboration
consists of open, candid communications with a significant amount of face-to-face interaction
among multiple stakeholders across the development, program office, and user communities. In-
formed participation by the government in interim or progressive reviews—as well as at major
milestones—is particularly important, because this intense communication doesn’t take place for
its own sake. It occurs as part of building and sustaining trust across the three communities.

In order to understand the contractor approach to iterative estimation, the government program
office typically reviews the contractor’s Basis of Estimate documentation as well as related doc-
uments that are involved in a software-intensive acquisition, including the Software Development
Plan (SDP), the System Engineering Management Plan (SEMP), and the Master Software Build
Plan (MSBP). These documents provide significant information about the contractor’s iterative
approach and estimation process. However, be aware that the documents are likely written assum-
ing that the reader has a complete understanding of iterative principles. In this case, the program
office should look in several additional areas where information can provide government evalua-
tors with greater insight into the contractor’s estimation process.

For example, many software-centric iterative methodologies seem to consider subsystem and
segment engineering hours as outside the scope of their typical iteration process and thus apply an
adjustment factor to their development hours to obtain the system engineering hours. While this is
an acceptable practice, if the RFC technical estimate affects work already done in previous itera-

CMU/SEI-2013-TN-031 | xi

tions, the government should expect some rework in systems engineering. However, if the RFC
technical estimate is for work not yet performed, then the scope of the new work needs to be eval-
uated to determine if system engineering hours need to increase or decrease.

Overall, effective evaluation of RFC technical estimates that come out of an iterative development
approach requires that the evaluators understand the principles of communication, learning, and
trust that are at the core of most iterative approaches using agile methods. This is not meant to
imply that the statement “trust us, we’re doing Agile” should be taken at face value. However, it
does mean that setting expectations about the progressive maturity of technical, programmatic,
and working software deliverables is required.

CMU/SEI-2013-TN-031 | xii

CMU/SEI-2013-TN-031 | xiii

Abstract

This technical note is the third in an SEI series on the adoption of lean and agile methods in the
DoD. Agile topics in acquisition were introduced in CMU/SEI-2010-TN-002 and CMU/SEI-
2011-TN-002. This technical note extends the topics covered into the evaluation and negotiation
of technical proposals that reflect iterative development approaches that in turn leverage agile
methods. This framework is intended for use by government program office personnel who seek
to understand evaluation approaches in this context. The information and recommendations con-
tained in this report result from observations of defense acquisition programs wherein contractors
employed iterative methods such as Agile software development methodology (hereafter referred
to as “agile”). Key questions for discussion with the contractor are provided, along with agile per-
spectives on why certain items will be defined differently depending on whether the contractor is
using agile or iterative methods for software development. The intended audience for this paper
includes any government personnel who need to support or participate in negotiations with con-
tractors for changes to the contract that is in place to develop software using agile or iterative
methods.

CMU/SEI-2013-TN-031 | xiv

CMU/SEI-2013-TN-031 | 1

1 Introduction

Typically, the government creates an independent cost estimate for each technical proposal re-
ceived in response to a Request For Change (RFC)1 on an active development contract. This esti-
mate is used to determine a fair and reasonable cost for the proposed work. It is used during nego-
tiations of the final price. However, if the methodology being employed by the contractor for
these software intensive proposals is based on agile or other iterative methods, the traditional gov-
ernment method for independent cost estimation becomes inappropriate as the basis for a relevant
comparison. This is not to say that the government responsibilities to evaluate the technical pro-
posals will change. Rather, how the government executes those responsibilities may change, as it
can be impacted by the methodology used by the contractor. Remember that the goal is a negoti-
ated agreement as to the overall cost of the technical proposal for the RFC; how you achieve that
goal when using iterative or agile methods is the variation discussed in this paper.2

1.1 Approach

Given the ever-increasing possibility that contractors will be employing methods other than the
traditional waterfall approach, how can the government effectively evaluate any proposed offer-
ing? This technical note will address the following issues:

1. Identify what questions should be answered to verify that the contractors costing methodolo-
gy is clear and complete: This information will allow the government personnel to do a more
thorough review and conduct more effective and reasonable negotiations.

2. Develop an alternate method or roadmap for government use that is compatible with the con-
tractor’s so that the government can effectively estimate costs and evaluate proposals. This
alternate method will identify contractor information the government needs to review in or-
der to understand the proposed change. It will allow the government to develop its own in-
dependent cost estimate for the technical proposal.

The proposed alternative methodology is based on general knowledge of the concepts underlying
the agile or iterative methods employed by contractors and a general review of some Requests for
Change.

This technical note is based on both a literature review and interviews with diverse programs and
practicing Agilists as discussed in Lapham [Lapham 2010, Lapham 2011].3

1 Another common term for RFC is Engineering Change Proposal (ECP). For purposes of this paper we will use

RFC.

2 While this data might also be used to help understand evaluating responses to Requests for Proposals that
involve agile or other iterative methods, no attempt was made to review or do a thorough analysis of data in that
situation. The data for this paper is based upon information from programs that had awarded contracts that
used agile or other iterative methods and were at the point of reviewing RFCs against those contracts.

3 Identifying information withheld at customer request.

CMU/SEI-2013-TN-031 | 2

1.2 Contents of This Document

The organization and intended audience for each topic in this technical note is provided below.

Executive Summary contains highlights of this document and will be beneficial for most reader
types to review.

Section 1, Introduction, describes the problem of adapting government cost estimation review to
change proposals on programs using agile methods. All readers should review this section.

Section 2, “New” View of Acquisition Life Cycle, describes the ways programs can interpret an
iterative development project relative to the DoD acquisition life-cycle framework set forth in
DoDI 5000.02. This section also addresses the popular misconception that software development
methodologies must mirror the program’s acquisition life cycle. This section is intended for all
reader types.

Section 3, Performing Effective Technical Evaluation in the Iterative/Agile Environment, discuss-
es the role of technical evaluations in agile programs and the cultural shifts program offices must
make in order to effectively employ agile methods within the DoD regulatory environment. This
section includes juxtapositions of agile executions with the acquisition life cycle. The audience
for this section includes policy makers, program managers, and program teams.

Section 4, Assessment of Contractor Estimating Methodology, provides discussion and guidance
for program offices for the purpose of assessing the validity of contractor estimation models dur-
ing the evaluation of contractor proposals resulting from RFCs. Its primary audience is acquisition
program managers and staff involved in the technical evaluation process.

Section 5, Conclusion, provides a brief summary of the topics addressed in this paper. This sec-
tion is intended for all reader types.

Appendix A, Acronyms, defines acronyms we use in the main body of the report.

Appendix B, Evaluation Question Checklist, provides a list of helpful questions for program man-
agers to apply to contractor estimates.

CMU/SEI-2013-TN-031 | 3

2 “New” View of Acquisition Life Cycle

As the old joke goes, “How do you eat an elephant? One bite at a time!” The general approach in
an agile or iterative development project is to take the software capabilities and requirements and
implement them via smaller “bites” (work units) within the overall system development frame-
work. Problems arise when interpreting iterative development activities relative to the traditional
DoD acquisition life-cycle framework.

2.1 Current Acquisition Life Cycles

In the current revision of DoDI 5000.02, programs have two options for acquiring systems: a sin-
gle-step acquisition or an evolutionary acquisition performed in increments [DoD 2008]. These
alternatives are depicted in Figure 1 and Figure 2 below. See Appendix A for definitions of the
acronyms shown in Figure 1 and Figure 2.

Figure 1: DoD Defense Acquisition Management System - Single Step Acquisition (2008)

Figure 2: DoD Defense Acquisition Management System - Evolutionary (2008)

CDD1
Technology

Development
AoA

DAB

EMD
Increment 1

Materiel Solution
Analysis

DAB

DAB

DAB

JROC JROC JROC

G
a

p
 A

n
al

y
si

s

ICD CPD1

JROC

CDD2

JROC

CBA

Technology
Development

EMD
Increment 2

CPD2

DAB

C

DAB

JROC

CDD3

JROC

Technology
Development

EMD
Increment 3 CPD3

DAB

C

B

B

. . .

Joint Operating Concepts
Joint Functional Concepts

DoD
Strategic Guidance

DAB

A

DAB

A

MDD

Continuous Technology Development and Maturation

CMU/SEI-2013-TN-031 | 4

The Defense Acquisition Guide (DAG) provides further information regarding the evolutionary
acquisition strategy [DAU 2011]:

Evolutionary acquisition strategies integrate advanced, mature technologies into producible
systems that can be deployed to the user as quickly as possible. An evolutionary acquisition
strategy matches available technology and resources to approved, time-phased, incremental
delivery of capability needs. Systems engineering processes provide the disciplined, integrated
development and production environment that supplies increasing capability to a materiel
solution. In incremental development, capability is developed and fielded in increments with
each successive increment building upon earlier increments to achieve an overall capability.
These approaches to evolutionary acquisition are particularly effective in quickly fielding an
initial capability or increment of functionality while allowing continued efforts to incrementally
attain the final, full, end-state capability. Robust systems engineering processes ensure that
systems are designed to easily and affordably accommodate additive capabilities in subsequent
increments (e.g., modular, open systems design). The incremental development relies heavily
on prototyping, both physical and functional, to get stakeholder feedback and reduce risk.

Evolutionary acquisition has increased the importance of traceability in program management.
If a defense system has multiple increments, systems engineering can trace the evolution of the
system. It can provide discipline to and documentation of the repeated trade-off analyses and
decisions associated with the program. Because of the nature of evolutionary acquisition,
design, development, deployment, and sustainment can each be occurring simultaneously for
different system increments.

As part of the efforts to address acquisition of Information Technology systems, the DoD is
adopting an additional life cycle based on the Business Capability Lifecycle (BCL) [DoD 2011a,
DoD 2011b]. This approach utilizes iterations and does not generally involve hardware develop-
ment. An example of this new approach is shown in Figure 3. See Appendix A for a listing of the
acronyms in the figure.

CMU/SEI-2013-TN-031 | 5

Figure 3: BCL Based Acquisition Framework (2011)

In the latter examples, the approach delivers a useful capability at the end of each increment. A
point that is missed quite often is that these acquisition frameworks are not the same as life cycles
represented in software development methodologies.

2.2 Acquisition Life Cycle vs. Software Development Life Cycle

There is a common misunderstanding that the software development methodology in use on a
program must mirror its acquisition life cycle. The acquisition life cycle is, in fact, software
methodology “agnostic.” Conflict may occur when attempting to apply “traditional” acquisition
life cycles and milestone events to the software development methodologies that utilize smaller
and more numerous work units. A traditional acquisition life cycle expects artifacts to be at a
more homogeneous level of maturity than is typical in an iterative software development. A no-
tional example showing the acquisition life cycle (as increments) and the contractor software de-
velopment (combination of spiral and incremental) is shown in Figure 4.

In this fictitious example, the contractor proposed two different software methodologies to ac-
complish the work needed for each specific increment. The software development methodologies
could have been an agile method such as XP or Scrum, as well as incremental and spiral devel-
opment.

CMU/SEI-2013-TN-031 | 6

Figure 4: Acquisition Life Cycle and Software Development (Example)

At the top of the diagram, the contractor completes two spirals for each major acquisition phase.
In the EMD phase, one spiral finishes just before a major milestone event within the phase. Simi-
lar patterns are reflected in Increments 2 and 3. In practical terms, this means that the contractor
will be “delivering” capability in between the phases and milestones that are defined in the pro-
gram’s acquisition cycle. While this may have great benefit for the development of assets like
technical infrastructure, it creates a disconnect in communication of accomplishment between the
contractor and the government program office and its stakeholders.

If a program is in a pre-acquisition phase (has not awarded a contract) a method for addressing the
mismatch between the acquisition life cycle and software development methodology is to ask the
offeror the following:

1. What software development methodology will be used?

2. What artifacts are typically created as part of that methodology, and at what points in time
(and list them in the Data Accession List—DAL)?

3. What is your approach to align the “milestone” events in the methodology with the acquisi-
tion life cycle?

4. What is your approach to Earned Value (EV) when applying it to the software methodology?

5. How is software quality measured?

6. What does “done” mean? (How is completion defined?)

7. Where in your Software Development Plan (SDP) is this information documented?

If you join a program office where the contract is already in place and cannot answer the above
questions by looking at the Software Development Plan, then it’s worth having a conversation
with the contractor that includes answering the above questions.

MSA TD EMD PD OS

B

Increment 2

Increment 3

A C

B C

B C

Increment 1

Adapted from dod5000.dau.mil

= Contractor Spiral
Development

= Contractor Incremental
Development

CMU/SEI-2013-TN-031 | 7

2.3 Sample Approach to Harmonizing the Software Development Life Cycle and
the Acquisition Life Cycle Framework

One sample approach to achieving a harmonized life cycle that accounts for the needs of both the
developer and the acquirer could divide the work into blocks. Each block roughly corresponds to
a system “increment” as shown in the previous examples (Figures 2, 3 and 4) and each block (also
referred to as a segment block) is comprised of one or more software increments, similar to that
shown in the center of Figure 4. Another way to think about the decomposition (and the subse-
quent application of the software methodology) is shown in Figure 5. It depicts, in general, the
relationship between the system, the segment blocks, the iterations and the capabilities.

Figure 5: Program Decomposition

Using a method of decomposition like this makes the alignment of traditional software develop-
ment milestones and reviews relative to the acquisition milestones a bit more challenging, particu-

SYSTEM

SEGMENT
BLOCKS
SEGMENT

BLOCKS
SEGMENT

BLOCKS
SEGMENT

BLOCKS

ITERATIO
NSITERATIO

NSITERATIO
NSITERATIONS

Is comprised of
one or more

Which are
comprised of
one or more

Incremental
Capability

When com-
bined provide
an

Which fulfills
requirements
of the

CMU/SEI-2013-TN-031 | 8

larly to the government program offices. In the SDP, the contractor should identify the various
milestones and reviews used to evaluate progress during and across iterations used in this devel-
opment methodology. We refer to these reviews as “progressive” reviews because they occur pro-
gressively throughout the development life cycle. Adding progressive reviews to the general dia-
gram previously discussed provides a bit more insight, as shown in Figure 6. The reviews and
milestones have been added at the appropriate level based on the use of iterative reviews such as:

• Progressive Segment Design Walkthrough (PSDW)

• Progressive Preliminary Design Walkthrough (PPDW)

• Progressive Build Planning Review (PBPR)

• Progressive Critical Design Walkthrough (PCDW)

• Progressive Integration Readiness Review (PIRR)

• Progressive and Test Readiness Review (PTRR)

Figure 6: Program Decomposition With Major Reviews4

4 Acronyms for program reviews required by DoD 5000.02 are listed and explained in Appendix B.

CMU/SEI-2013-TN-031 | 9

2.4 Addressing the Differences in the Life Cycle Milestones and Reviews

The contractor’s incremental-iterative implementation will typically use a set number of weeks
for each iteration. For illustrative purposes suppose the fictitious contractor uses a 22-week itera-
tion5 which comprises the activities and durations shown in Table 1.

Table 1: Progressive Development Activities

DEVELOPMENT

ACTIVITY

DURATION ARTIFACTS & REVIEWS

Preliminary Design and Iteration Plan-
ning

4 weeks Engineering Artifacts, Test Plan, Progressive Preliminary
Design Walkthrough (PPDW), Progressive Build Planning
Review (PBPR), Actions

Detailed Design

Code and Unit Test (CUT) and Unit
Integration and Test
Software Integration and Test (SWIT)

14 weeks Engineering Artifacts, Unit Test Plan, Progressive Critical
Design Walkthrough (PCDW), Actions

Code & Unit Test Artifacts, Peer Reviews, Actions
Progressive Integration Readiness Review (PIRR), Verify
Design, Validate Software Requirement Specification (SRS)
Requirements, Pre-Ship Review (PSR), Defect Work-Off

Software Configuration Item Qualifica-
tion Test (CIQT) or Risk Reduction
Integration and Test

6 weeks Dry Run, Run for Record (RFR), Test Reports, Progressive
Test Readiness Review (PTRR), Post Test Review (PTR),
Defect Work-Off

As stated in section 2.2, the DAG provides further interpretive guidance for program managers
deciding to use an incremental approach. It further discusses the issues of program reviews with
this approach [DAU 2011]:

Programs with an evolutionary acquisition strategy undergo additional reviews (e.g., a Mile-
stone B for each increment). The systems engineering activities and reviews are repeated as
appropriate to ensure the same level of program insight is achieved within evolutionary acqui-
sition programs.

The SEMP and SDP should provide very specific information as to when certain activities and
reviews occur relative to the block (increment) as well as the iterations. This development process
aligns very well with the guidance provided in the DAG. For instance, the DAG provides the fol-
lowing guidance for Critical Design Reviews when using an incremental approach [DAU 2011]:

For complex systems, a CDR may be conducted for each subsystem and logistics element.
These incremental reviews lead to an overall system CDR. Incremental design reviews are usu-
ally defined at Interface Control Document boundaries. System level performance is supported
by compliance with Interface Control Documents, but not assured. When incremental reviews
have been conducted, additional risk is introduced until the overall system CDR establishes the
complete system product baseline. Each incremental CDR closes a functional or physical area
of design to modification regardless of when it is held.6 This completed area of design may

5 In many agile environments, iterations are much closer to 2-4 week cycles. Multiple iterations constitute a re-

lease. In this case, the contractor opted for a longer duration due to the nature of the technical work.

6 In an agile approach, a functional or physical area might not necessarily be closed to modification once its CDR
is complete. As with traditional development efforts, downstream changes to requirements or design may in
some circumstances necessitate revisiting previously completed work. However, in agile environments reo-
pened design and rework is part of the normal agile development plan and is not considered unusual.

CMU/SEI-2013-TN-031 | 10

need to be reopened if open areas cannot achieve desired performance in isolation. If the
schedule is being preserved through parallel design and build decisions, any system deficien-
cies that lead to reopening design will result in rework and possible material scrap.

When using agile methods, the materials one might see at CDR will look different due to the it-
erative nature of the approach. All documentation will not appear at the same level of maturity:

• Some documentation will still be in draft condition (such as design documents for the overall
system that support requirements that have been allocated to some future increment).

• Some documents will be partially completed (such as those supporting requirements in up-
coming increments that are dependent upon the implementation of earlier capabilities).

• Some will be fully complete (perhaps for requirements that are being implemented in the
current increment).

When trying to synchronize or adapt more agile software development methodologies with the
more traditional acquisition life cycle, there are several options available. They are summarized in
Table 2.

CMU/SEI-2013-TN-031 | 11

Table 2: PMO Options Supporting Iterative/Incremental Development

OPTION ADVANTAGES DISADVANTAGES

A – PMO uses the PDR and CDR
events in each block as traditional
milestone events

• Fits the more traditional acquisition life cycle
• Minimizes personnel travel costs

• Less synchronicity between development life cycle and review
life cycle. CDRs and PDRs (per block) may be accomplished
well into the iteration cycle raising the distinct possibility of re-
work in the event there is a direction change (e.g., require-
ments, etc.)

• PDR and CDR events end up being very long (3-5 days possi-
bly) as information on each iteration will most likely be present-
ed

• Decreases the in-process communication between the contrac-
tors and PMO regarding development efforts

• Impact: Artifacts under review will be of different maturity levels
since various iterations will be reviewed concurrently. Some ar-
tifacts will be complete, some under construction and some not
yet started. This could result in confusion to the reviewer and
unnecessary contractor comment adjudication with products
under construction subsequent to artifacts being made availa-
ble for review. Without proper training and coordination of
what’s included and what is not included, this approach could
be seen as defeating the purpose of PDR/CDR.

CMU/SEI-2013-TN-031 | 12

OPTION ADVANTAGES DISADVANTAGES

B – PMO team participates in each of
multiple PPDW/PCDWs (one per
iteration). PDR/CDR are still held at
some level of technical discussion
and also includes management ele-
ments

• Allows for earlier looks at the evolving products by program
office staff and end users or their surrogates

• Allows for direction change if needed much earlier in the
delivery cycle of the increment

• Potentially shortens the PDR and CDR to a high-level re-
view (summarization of development efforts and outstand-
ing action items)

• Allows for better communication between contractors and
PMO regarding development efforts

• Aligned well with the DAG guidance on incremental devel-
opment

• Potentially increased synchronicity between development
life cycle and review life cycle.

• Impact: Only review artifacts for the iteration being re-
viewed. Artifacts under review should be relatively of the
same maturity level. The maturity levels need to be set by
the appropriate entry and exit criteria. Depending on the
situation, the artifacts could be of differing maturity but that
could cause more confusion. Using the same level of ma-
turity could result in less confusion to the reviewer and re-
duction of unnecessary contractor comment adjudication
with few products under construction subsequent to arti-
facts being made available for review.

• Could require more travel (if not done remotely) and resource
allocation to review activities by PMO personnel; however,
costs related to these activities are highly likely to result in low-
er overall program cost and risk

• Potential for loss of big picture view due to dependencies
across iterations. The work required to maintain the big picture
could be greater than for traditional approaches.

• Risk that required replanning may not receive appropriate em-
phasis as contents and requirements move from iteration to it-
eration.

CMU/SEI-2013-TN-031 | 13

OPTION ADVANTAGES DISADVANTAGES

C – PMO technical staff (engineers)
participates in each PPDW/PCDW
(per iteration) and PDR/CDR be-
comes a management level review.
No technical detail is discussed other
than a summary for management.

• Potentially shortens the CDR to a high-level review (sum-
marization of development efforts and outstanding action
items)

• Allows for earlier looks at the evolving products by program
office staff and end users and their surrogates

• Allows for direction change if needed much earlier in the
delivery cycle of the increment

• Allows for better communication between contractors and
PMO regarding development efforts

• Aligned well with the DAG incremental guidance
• Potentially increased synchronicity between development

life cycle and review life cycle.
• Impact: Only review artifacts for the iteration being re-

viewed. Artifacts under review should be relatively of the
same maturity level. This could result in less confusion to
the reviewer and reduction of unnecessary contractor
comment adjudication with few products under construction
subsequent to artifacts being made available for review.

• Requires more travel and resource allocation for review activi-
ties by PMO personnel

• Requires increased communications by technical staff,. con-
veying interim review results to PMO management personnel.

• Impact: Additional communications required to ensure effec-
tive information flow from technical staff to PMO personnel.
This communication must accurately present results and corre-
sponding context for each iterative review. Further, non-verbal
aspects of the iterative review as well as management level
nuances can be difficult to capture in prose.

CMU/SEI-2013-TN-031 | 14

Precedents exist for each of these options being used in DoD acquisition programs, in some cases
dating back to the 1990s. The key points to making these options effective are

• open, honest, and frequent communications

• careful review and tailoring of the milestone event criteria (entry/exit and expected results)

• comfort being outside the traditional acquisition life cycle “comfort zone”

The next section of this document addresses the execution of technical reviews in iterative/agile
environments.

CMU/SEI-2013-TN-031 | 15

3 Performing Effective Technical Evaluation in the
Iterative/Agile Environment

This section explores what it means to do technical evaluation in the context of the iterative or
agile environment in comparison to how it would be done in a traditional acquisition environment.
In the context of iterative software engineering processes employed by some programs, many of
the tasks are the same, but their focus will be slightly different. We discuss the roster of partici-
pants required to carry out technical evaluations and the adaptations required of those participants
before turning toward specific points about technical effort estimation and program oversight.

3.1 Technical Evaluation Participants

Technical evaluation teams should include representatives from the teams/disciplines that com-
prise the program office. In our experience working with a variety of programs across the DoD,
participants should include (but are not limited to) representatives from the following disciplines:

• program management

• systems engineering

• software engineering

• information assurance/security

• hardware/manufacturing

• logistics

• contracting

• financial management

• test and verification

This list of representatives is typical of the historical representation found during most traditional
technical evaluations. The type and domain of the participants does not change for iterative or
agile environments.

3.2 Cultural Adaptation to Iterative Methods

Cultures often emerge around the methods that are employed on a project. This section addresses
the iterative principles that can be used by contractors and how they compare to traditional princi-
ples. This should help the government understand the differences and define processes to enable
changes that accommodate these differences.

The traditional culture that most government PMOs are familiar with is different from the one that
is emerging out of iterative or agile developed programs. Neither is inherently better than the oth-
er, but one may be more suitable than the other for different purposes. Until alternative direction
is available, the challenge is to facilitate the adoption of the iterative culture within the constructs
of the traditional DoD culture. Steps will need to be taken to mitigate risks related to cultural con-
flicts that may arise. Table 3 provides an overview of the cultural dimensions that may be affected
[Lapham 2011].

CMU/SEI-2013-TN-031 | 16

Table 3: Comparison of Iterative with Traditional DoD Cultural Elements

 Iterative DoD Traditional DoD

Organizational Structure Flexible and adaptive structures
Strong communication mechanisms
when teams are distributed

Formal structures that are difficult to
change
Hierarchical, command and control-
based teams
Integrated Product Teams that have
formal responsibilities

Leadership style Facilitative leadership
Leader as champion and team ad-
vocate

Leader as keeper of vision
Leader as primary source of authori-
ty to act

Rewards System Team is focus of reward systems
Sometimes team itself recognizes
individuals

Individual is focus of the reward
system

Communications and Decision
Making

Frequent interim reviews such as
PCDW, PIRR, PPDW, PBPR, and
PSDW)
Evocative documents to feed con-
versation
“Just enough” documentation, highly
dependent on product context

Top down communication structures
dominate
External regulations, policies and
procedures drive the focus of work.
Indirect communications, like docu-
mented activities and processes
dominate over face-to-face dialogue
Extensive traditional, representa-
tional documents used by the PMO
throughout the development life
cycle to oversee the progress of the
developer
PMO oversight tools focused on
demonstrating compliance vs.
achieving insight into progress

Staffing Model Cross-functional teams including all
roles across the life cycle through-
out the lifespan of the project

Uses traditional life cycle model with
separate teams, particularly for de-
velopment and testing
Different roles are active at different
defined points in the life cycle and
are not substantively involved except
at those times

In order to adapt to the newer iterative culture, adjustments in expectations will have to occur.
Some of the adjustments that should be considered are

• providing incentives based on early incremental software release as opposed to “finished”
documents, thus planning those incremental releases and incorporating them into the
award/incentive structure on the contract. This will most likely change the type of reward
system in place.

• participating actively in progress reviews and demonstrations (incremental or progressive
reviews)

• planning and working collaboratively (shoulder-to-shoulder) amongst the program team,
including both customers and management (acquirers and contractors)

• actively partnering in the creation of the software solution. This would include collaboration
during RFCs.

CMU/SEI-2013-TN-031 | 17

The GAO has repeatedly testified before Congress that it recommends that program managers
encourage collaboration and communication.7 Both developer and PMO need to reflect a “learn
and adapt” viewpoint rather than a “big bang” viewpoint. The PMO should communicate fre-
quently with the contractor about program goals, provide timely feedback on iterative software
capabilities as they are developed, and work with the contractor to ensure changes are well under-
stood and smoothly incorporated as required and approved. The contractor is responsible for de-
veloping the software but uses the synergy gained from regular interaction with the PMO to meet
expectations and refine the capabilities being developed. Overall, this synergy and constant com-
munication should help reduce programmatic risks. Note that “collaboration” is not meant to en-
courage constructive change, but rather to allow for detailed discussion of the change in question.8
If other changes are identified, then they must be entered into the RFC process for approval.

The following sections address specific topics that generated questions when we were working
with a large program using iterative development.

3.3 Collaborative Environment

Agile or iterative software developments are based on collaboration between the contractor and
customer. Without direct involvement of the system’s intended users or knowledgeable surrogates
(PMO members), early validation of the direction of the implementation is impossible to accom-
plish. Early validation of the direction is essential to ensure that iterative development proceeds in
a stable manner, based on layer after layer of evolving, useful functionality. Some programs may
refer to these evolving layers as “threads,” “releases,” “builds,” “iterations,” “spirals,” “slices,”
and other similar terms.

The DoD recognizes the benefits of incremental approaches to system development. The Defense
Acquisition Guidebook (DAG) Section 4.3.6 discusses the use of iterative development method-
ologies in the context of incremental acquisitions [DAU 2011] (as previously noted in 2.1.1):

In incremental development, capability is developed and fielded in increments with each suc-
cessive increment building upon earlier increments to achieve an overall capability. These ap-
proaches to evolutionary acquisition are particularly effective in quickly fielding an initial ca-
pability or increment of functionality while allowing continued efforts to incrementally attain
the final, full, end-state capability.

A contractor’s iterative or agile methodology should employ similar concepts. Specific behaviors
emerge when contractors employ iterative methods. These behaviors will require certain aspects
of the traditional activities of both the contractor and the PMO to change. Programmatic oversight
objectives do not change; however, the methods for achieving these objectives will vary from

7 GAO-10-447T (2010), GAO-11-590T (2011), GAO-09-705T (2009)

8 Constructive change is “defined as an oral or written act or failure to act by authorized Government official con-
strued by contractor as having same effect as a written change order. Such a change must involve (a) a change
in performance beyond minimum contract requirements, and (b) word or deed by government representative
which requires contractor effort that is not a necessary part of the contract, and (c) it requires ratification.” [Lap-
ham 2010]

CMU/SEI-2013-TN-031 | 18

those undertaken in more traditional waterfall-based developments. Some of the government
PMO enabling actions that support iterative methods are the following:

1. Adjust expectations for document reviews, program milestone reviews, and progressive re-
views to recognize that work products will mature at varying rates in an iterative develop-
ment. Requirements and design allocated to future iterations should not be expected to be
fully matured during early iterations. Ensure that program office oversight is consistent with
the expected maturity of the work products. Costs for these activities should reflect this ap-
proach. This avoids rework by allowing for learning from earlier iterations to gracefully in-
form the later parts of the design and implementation in conjunction with the evolution of the
capabilities to be developed.

2. Allocate resources and emphasize to program office staff and other stakeholders the im-
portance of participating in the joint progressive reviews such as such as the Progressive
Critical Design Walkthrough (PCDW), PIRR, PPDW, PBPR, and PSDW in addition to the
programmatic milestone capstone events (PDR, CDR, etc.). These progressive reviews are
used to build common understanding of incremental capabilities, layer after layer, which will
form the overall capability seen at the large program milestone reviews and are literally
where program guidance decisions are made. Thus, the development/government feedback at
the reviews should be as important, if not more so, than that from the program milestone re-
views. Diligence in support of these activities will improve communication between the pro-
gram and the contractor and save effort and cost further downstream. Cost estimates should
reflect this type of government/contractor interaction.

3. Employ candor, open communications (including face-to-face meetings as appropriate), and
transparency, in particular during the negotiations of RFCs. This includes ensuring prompt
turnaround of CDRL approvals.

4. Ensure developer access to end user surrogates at the PMO with depth in operational use of
the proposed system capabilities. The PMO must be sure that user/operational requirements
are accurately translated to the contractor to ensure clarity and consistency, and that any con-
tractor questions about the requirements can be resolved expeditiously and accurately. This
resolution will reduce the overall cost associated with any RFC.

5. Establish CDRLs and other contractual criteria that encourage several small deliveries rather
than a single “big bang” delivery. In the DIDs for these CDRLs, ensure that the correct ex-
pectations are set in terms of the maturity of the information being commensurate with the
maturity of the release being worked on.

6. Permit early delivery of working (although potentially prototype-quality) software. This al-
lows misunderstandings to be caught early and provides both developer and user the oppor-
tunity to refresh their knowledge on the evolving operational challenges that the software
will be expected to meet.

7. Ensure that both the contractor and the government PMO agree on what “done” means. Re-
member that work products will necessarily exist at varying levels of maturity due to the it-
erative nature of the approach. Interim work products must meet pre-established completion
criteria to move into a final, releasable state.

8. Identify and employ someone on the government side to coach/train program office staff in
understanding and working within the iterative environment. While most program offices are
not staffed to “coach” methodology, they are funded or have access to training for their

CMU/SEI-2013-TN-031 | 19

teams. When embarking on programs that use or plan to use iterative or agile methods, train-
ing on those methods is paramount, just as training on the acquisition process in general is
required. The objective is to ensure personnel involved in evaluation of cost estimates based
on iterative/agile methods know what differences to expect and how to identify them. Train-
ing and coaching activities can run the gamut from formal professional courses/seminars, to
training days, to brown-bag lunches with those experienced in these methods.

The key behaviors above are ones that will help the program move toward allowing the contractor
to provide benefits from employing the iterative development methodology, while still living
within the traditional DoD acquisition structure.

The most important of any of the enablers is to ensure that there is strong cooperation between the
PMO and the contractor. This is critical to realizing the benefits of an iterative approach. This
cooperation will facilitate obtaining an independent cost estimate in that more information and
data should flow (in both directions) during the collaboration. Assumptions, past performance,
and other key points should be shared. This will build understanding, ensure the requirements are
interpreted correctly, and reduce risk. By cooperation, we mean communication about ground
rules and assumptions and other general factors that contribute to shared understanding. For ex-
ample, one RFC9 we were told about had estimates from both the PMO and the contractor. These
estimates were 400 and 1,000 SLOC respectively. A collaborative discussion was held to address
the issue, resulting in new estimates from the contractor, new government negotiation limits, and
an agreed-upon resolution.

The notion of collaboration as a key to successful program execution is not a new one and is not
exclusive to iterative or agile development. However, such collaboration is an absolute require-
ment to realizing the benefits of iterative approaches. Collaborative behavior might actually be
easier to accomplish in an iterative setting because the scope of an iteration is limited—it is con-
siderably smaller than the entire program scope.

3.4 Common Areas of Contention: Systems Engineering and Test

Any requested change to the system ripples into a reassessment of the systems and test engineer-
ing efforts and resources required to execute the program. In our experience with programs lever-
aging agile methods, the application of systems engineering and test engineering effort to RFC
estimates has been an area that causes a great deal of consternation and miscommunication be-
tween contractors and government program office teams. The methods that contractors have used
to arrive at modified estimates for these tasks are likely not as straightforward or transparent as
program office teams expect based on experience with more traditional development methods. As
stated previously, this technical note is based on experiences dealing with technical proposals re-
sponding to RFCs to existing contracts. While many if not all of these observations may apply to
technical evaluations from initial acquisition through sustainment, investigation of this claim re-
mains for future research.

This section provides guidance for program office interpretation and evaluation of contractor es-
timates for two critical areas: systems engineering and test.

9 The authors were allowed to observe and review some RFCs from a program using iterative/agile methods. The

program has requested anonymity.

CMU/SEI-2013-TN-031 | 20

3.4.1 Evaluating Systems Engineering Estimates

Typically, for traditional systems comprised of subsystems or segments, the subsystem system
engineering hours are determined by applying some factor against the development hours. Some-
times the contractor may consider the subsystem and segment system engineering hours as outside
their typical iteration process and thus apply a factor to their development hours to obtain the sys-
tems engineering hours.

There is nothing incorrect about this approach. However, the basis for the development hours
needs to be clearly disclosed. In the case of agile/iterative methods, initial estimation is likely to
be performed using story points10 or some other unit of work that is unique to the particular devel-
opment team and defined by the contractor. If systems engineering effort is to be added to the es-
timate, some adjustment factor or estimating relationship must be applied that clearly links the
estimated development effort to the add-on systems engineering effort. For a complete under-
standing, the PMO needs to obtain all the assumptions made in determining this formula. The fol-
lowing should be considered:

• If the RFC technical proposal affects work already done in a previous iteration, expect some
rework in systems engineering. The contractor needs to explicitly state what work has al-
ready been done and what changes will be needed.

• If the RFC technical proposal affects work not yet done in any iteration and does not signifi-
cantly change the scope of the feature or capability, in general, the system engineering hours
shouldn’t increase. However, if the scope is significantly changed, then additional or poten-
tially fewer system engineering hours may be applicable. Again, all the technical and process
assumptions related to the RFC need to be shared and discussed.

3.4.2 Evaluating Test Engineering Estimates

RFC technical proposals also necessitate an evaluation of the effort required to develop and exe-
cute all pertinent test cases. As with system engineering, test engineering hours for traditional sys-
tems are determined by applying some factor against the development hours. Note that subsystem
and segment (if applicable) test engineering hours are not those hours expended during unit test or
initial integration during the iterations.

In general, as with systems engineering, the following should be considered:

• If the RFC technical proposal affects work already done in a previous iteration, expect some
additional testing. The contractor needs to explicitly state what work has already been done
and what changes will be needed.

• If the RFC technical proposal affects work not yet done in any iteration and does not signifi-
cantly change the scope of the feature or capability generally speaking, the test engineering
hours shouldn’t increase. However, if the scope is significantly changed then additional or

10 “Story points are a unit of measure for expressing the overall size of a user story, feature, or other piece of work

…The number of story points associated with a story represents the overall size of the story. There is no set
formula for defining the size of a story. Rather a story-point estimate is an amalgamation of the amount of effort
involved in developing the feature, the complexity of developing it, the risk inherent in it and so on.” [Cohn 2006]

CMU/SEI-2013-TN-031 | 21

fewer test hours may be applicable. Again, all the assumptions need to be shared and dis-
cussed.

• RFC technical proposals may, in fact, result in a reduction in the scope of testing when func-
tionality is cut from the system. This may not produce linear cuts in test cost/effort.

• Validation and verification in an iterative collaboration are reversed. Validation of require-
ments and implementation approach occur during each iteration through the user collabora-
tion. Verification occurs via continuous integration and frequent regression testing of the
evolving software code base. Careful review needs to be done to assure the proposed solu-
tion will be verified at the right level. For example, if a change is being proposed after the
original code is verified, additional retesting will result. A requirement might be traded away
at one iteration but then revised in a subsequent iteration. Ensuring the feature is tested in a
subsequent segment verification run is then crucial.

A common practice of test engineering in agile or iterative development approaches is to en-
gage in Test-Driven Development, where software code isn’t written until the tests that will
verify the code have been completed. In programs that are adopting this approach, test engi-
neers are involved in a significant way from the very beginning of the project, and see the
evolution of the software in a direct way.

3.4.3 Using Actual Data as a Basis of Estimate

With both systems engineering and test engineering activities, past efforts on the program
may be the most viable source of estimates in support of the RFC technical proposal. To that
end, consider the following questions about the viability of actual program data:

• When using actual hours as the basis for the RFC technical proposal estimate (while this
is a valid indicator of what it has taken to do the work), several questions need to be
asked (these are not in any particular order):

− Is the future work similar enough to the past work to warrant direct comparison?

− Are there any circumstances (learning curve, changes in personnel) that may affect the
estimate going forward? Agile environments are particularly sensitive to personnel
change, since the relative estimation that is used inside an iteration is based largely on

the particular skills and knowledge of the team performing the work.

− Has the team reached a point where it is working at optimal levels, thus perhaps being
able to reduce the amount of work needed to accomplish any new tasks? Optimal does
not mean the team cannot continue to improve but in this case means that any learning

curve and other contributing factors to forming the team are in the past.

− How is the work tracked for each iteration? Are measurements and plans (and diver-
gence from plans) being updated in a timely fashion to reflect the actual work of each it-

eration?

• Be aware that estimates for new/updated taskings may unintentionally mask problems or
deficits in the current work. Understand how each variable in an estimation formula is
calculated.

CMU/SEI-2013-TN-031 | 22

− For example, a formula that includes Estimate To Complete (ETC) for existing work in
the calculation of a new effort estimate would inherently absorb any delays or rework

caused by defects or errors that had previously been introduced in the existing work.

− To what extent is continuous integration and automated testing used and how is it im-

pacted by the technical proposal?

In many of the agile development methodologies work is purposely delayed or rework (refactor-
ing) is purposely planned to later iterations. These questions and their answers will help provide
the flexibility that the PMO is expecting by using the iterative or agile process.

3.5 Oversight and Insight Implications

Every program requires oversight and insight by the government and contractor’s program man-
agement offices. The required level of oversight is pre-determined by myriad government regula-
tions. Assuming the program is designated as ACAT I, it requires significant oversight as outlined
in the FAR and DoD 5000. Reviews such as PDR and CDR are required and will be part of the
contract. However, the documentation typically created in traditional developments with these
large milestone events is not separately created when using an iterative approach. The information
is often available from the standard tools that are used to support iterative development, but creat-
ing formal documents only for review purposes is not typical of agile/iterative methods. Due to
the iterative process, project documents and other CDRLs will exhibit varying levels of maturity
at the time of programmatic milestones. Difficulties may arise when evaluating changes that af-
fect components at different levels of maturity. The key to avoiding these types of issues is to de-
termine what is sufficient for the situation and implement the appropriate level of detail.

The entire purpose of technical assessments is to measure technical progress and assess both pro-
gram plans and requirements. A structured technical review should demonstrate and confirm
completion (within cost and schedule targets) of required technical accomplishments and exit cri-
teria as defined by the program [DAU 2011]. There is a direct relationship between the technical
review and software estimation processes. The output of the technical reviews becomes input for
estimates for future iterations.

Some of the main challenges to the adoption of iterative methods include the following:

• lack of team-based incentives that promote cooperative interactions and communications
while remaining within the bounds of the FAR and other government regulations [Lapham
2011]

• difficulty in establishing incentive structures that reward both working incremental software
delivery and sufficient (at appropriate maturity) documentation [Lapham, 2011]

• lack of shared understanding of definitions/key concepts (Consider SLOC-based notions of
program size vs. story points)

• lack of understanding of document content and volume. As previously noted, documentation
in agile development efforts matures through the course of development. When program of-
fice teams fail to recognize that evolution, this can mire down insight and oversight activi-
ties.

CMU/SEI-2013-TN-031 | 23

• daunting regulatory language—Acquirers may fear agile efforts because it is currently less
straightforward to establish and maintain traceability between applicable regulations and the
evolving documents that are produced in an agile delivery [Lapham 2011].

All of these issues will, to some extent, impact the estimation process and the related negotiations.

Most things that occur during contract negotiations (including those for RFCs) using iterative
methods appear to be very similar to traditional negotiations; however, differences are present.
For instance, a contractor may not be able to use actual program data to forecast systems engi-
neering effort associated with an RFC due to a lack of available data on the program to date. Data
may be unavailable or unreliable simply because it is early in the program, only one or two itera-
tions have been executed, rendering the sample size too small to use as a basis to determine the
amount of overall systems engineering required to support the change. Another example is when
the contractor says it is using actual hours for some time period. In agile terms, it is using its
teams’ velocities for that period of time. While the contractor should be providing the translation
to traditional estimates, the government could lose insight into the lowest levels of the basis of
estimation. It is critical that the government team understand the linkages and traceability associ-
ated with such translations. The contractor’s SEMP, measurement plans, and other program doc-
umentation should paint a clear picture that enables the government team to follow the derivation
of cost and effort estimates.

Furthermore, maturity of deliverables and the data provided must be understood in advance. Agile
methods are not an excuse for, nor are they synonymous with, poor program tracking. The gov-
ernment team must have clarity about the expected evolution of tracking data and monitor status
reports and estimates accordingly.

Finally, the government PMO must understand that it has contracted for an iterative development
method that is being implemented within a traditional DoD acquisition model. This distinction
was described in Section 2 of this document.

The next section of this document addresses the actual review of a contractor’s estimation meth-
odology in an agile development/DoD acquisition model.

CMU/SEI-2013-TN-031 | 24

4 Assessment of Contractor Estimating Methodology

This section will address the types of data the program office should expect to receive from the
contractor about their estimation methodology. In addition to any estimating and basis of estimate
documentation, other supporting documents including, but not limited to, the Software Develop-
ment Plan and the Master Software Build Plan also provide insight into the methods employed by
the contractor for estimating their work.

Table 4 in Appendix B provides a distillation of key questions government personnel might ask
regarding contractor estimation methodology. It may be used to guide further critical analysis on
the part of program office staff in support of RFCs that involve iterative or agile development
methodologies. The sections included here focus on different types of information that should be
documented and understood by the evaluation team.

4.1 Methodology Documentation Review

Absolute estimation methods, typical of those used in evaluating RFC technical proposals, require
definition of the “unit of work” that will be used as the basis for allocating resources and sched-
ule. In traditional software development methodologies, function points (FPs) or source lines of
code (SLOC) have been the most prevalent definitions for a unit of work (UOW). As noted in
3.4.1, in agile/iterative methods, initial estimation is likely to be performed using story points or
some other relative unit of work that is unique to the particular development team and defined by
the contractor.

Upon initial review, the methodology documentation provided by some agile developers may
leave the reader with the impression that estimation for software elements is done on the basis of
source lines of code (SLOC)-based sizing perhaps through the use of parametric models. Often
this is done because the developer believes that the traditional sizing is how they are expected to
communicate their estimates, even though the SLOC estimate has actually been derived from an-
other UOW type.11 However, a review of the Software Development Plan (SDP) is likely to show
that a different UOW such as a story point (or something similarly defined) is the building block
for assigning technical taskings across an iteration. The methodology documentation may fail to
establish the linkage between these bases of estimation.

For the evaluator to truly understand and have confidence in the viability of the estimates, if such
a conversion is made between UOW and SLOC counts, it must be documented and made availa-
ble to the government team. Questions the team should ask when reviewing the conversion infor-
mation include the following:

• Is the fidelity of the estimate the same level before and after the conversion?

11 In the programs observed for this technical note, this type of conversion was done to allow the government to

see estimates in familiar terms. In fact, this instance did use parametric tools while not all do. This is not a nor-
mal agile practice but one adopted in this instance. In cases where both the contractor and the government are
using agile specific models added to parametric tools, this conversion to SLOC may not occur.

CMU/SEI-2013-TN-031 | 25

• Is there a clear linkage point with conversion data that allows the estimation process to move
seamlessly from a UOW-based estimate of engineering work to perform, toward a SEER-
SEM-based (or other parametric tool) estimate of the size of the resultant work product?

• If a parametric model is used directly, does it employ tool components or modules specific to
agile methods? If not, have factors been adjusted a priori to account for differences attribut-
able to agile or other iterative methods?

Furthermore, review of the SDP during a RFC technical evaluation may show that the “size” defi-
nition of a UOW has changed since the original SDP was submitted;12 if so, such a change invites
important questions:

• Why has the effort range for UOWs shifted?

1. What is the rationale?

1. Are data available to support the change?

2. Is the change a result of poor performance or performance variations?

3. How has the contractor determined that a different size range better encapsulates
the individual tasks? (this is actually quite likely, since the contractor will have
higher fidelity team velocity data once iterations have actually commenced)

• What is the impact of the change in scale?

1. Is the sizing of the UOW merely an adjustment of scale for staff management
purposes, or do downstream calculations and estimations require revision?

2. Does the quantity of UOWs remain constant, with a corresponding overall
schedule increase?

3. Or does the number of UOWs decrease, while overall effort/schedule planning
remains constant?

4.1.1 Work Breakdown Structure and Skill Mix

A short discussion providing background for how program-specific factors are developed is help-
ful for understanding why certain metrics are used and others are not in different estimation pack-
ages. If the Work Breakdown Structure (WBS) and skill mix are provided, a discussion of how
the actual data is distributed across the WBS and skill mix would be helpful. This explanation
should include the factors used to create any estimates and how they were derived, as well as the
labor or cost implication for each affected line of the WBS. Also look for any dates or revision
numbers on the WBS and skill mix data. This determines how current the data is and if it has
changed multiple times. If it has changed, an explanation of why it has changed would be ger-
mane. While detailed information about skill mixes used within an agile team were not gathered

12 Many might think the SDP should define how the UOW is supposed to change based on past estimations and

actual velocity obtained. In this case, the contractor did not put that information in the SDP but rather just stated
that a change occurred. This behavior invited the questions in the list. Even if a change is defined, the questions
are pertinent and should be addressed during the review of the SDP.

CMU/SEI-2013-TN-031 | 26

during this study, note that the skill mix and make up of an agile team can be different than that of
a team using traditional software methods.

4.1.2 Estimating Methodology

A good top level overview of the contractor’s estimating methodology should be provided. Look
for several details that provide greater insight such as information about the estimate’s assump-
tions, the basis of estimate, parametric models and how they were used. The government program
office needs to totally understand the contractor’s estimation methodology so they can develop a
way of translating it to something that will be acceptable to upper levels of government. Some-
times the contractor will provide this type of data by providing the information in the standard
format versus the format used by the agile team. If the translation is needed, then it could include
a training process to educate everyone in the status chain on what the contractor’s data means.
Each of the topics is addressed in the following subsections.

4.1.2.1 General

These high level provisions apply to all elements of the cost/effort calculations in support of a
proposed change.

1. Make sure any calculations provided are accurate. Inappropriate/unclear mathematical repre-
sentation hinders comprehension of the data and causes concerns about the fidelity of the da-
ta in other reports/deliverables. While this is true for both traditional and agile estimations, it
can become more onerous in an agile environment as people are learning that method and
may overlook the basics.

2. Look for an explanation of how iteration tasking and staffing are arranged to minimize con-
flict among staff resources and maximize staff skill sets. If this data is not available, then ask
for a short explanation. While agile enables self-directed teams, this is not an excuse for not
having this data available.

3. Overlap across iterations helps to minimize schedule but increases dependencies and the
probability of rework. Assumptions regarding iteration overlap should be explicitly stated in
the basis of estimate.

4. Probe whether drawdown from the project backlog reflects risk reduction, versus a deferral
of difficult work until later iterations. Ask specific questions about why the different items in
the project backlog are chosen for specific iterations.

4.1.2.2 Basis of Estimate

This section addresses the validity of core data and assumptions used to derive estimates in sup-
port of the RFC.

• Determine how labor hours are estimated. Are they based on historical experience or experi-
ence on similar (relevant and analogous) previous programs, modified to reflect the com-
plexity in program specifications and requirements, manufacturing processes, integration
procedures, make-buy decisions, etc.? Ensure the following questions are answered:

1. Is historical information about agile development metrics available on the actual work
team proposed to handle the task? Did the historical project use the same agile processes?

CMU/SEI-2013-TN-031 | 27

2. What did the contractor use if historical or similar previous experience is not used?

3. If theoretical data is used, how will it be adjusted to factor in historical performance as
the project progresses?

4. How does contractor handle extraordinary circumstances with historical experience such
as excessive rework or refactoring? How does the contractor determine similarity?

5. What similar programs are considered as a basis for historical estimates? Or will this vary
greatly based on the requirement/RFC?

6. Are the basic components of the work at hand the same as the UOW that is defined in the
SDP? If “basic work components” are not UOWs, the linkage between all of these sizing
elements should be explained in further detail.

• Ensure the contractor provides the method for identifying or determining analogous or
equivalent efforts if they use that data to spread software efforts across the scheduled time
frame. This information is critical for the government to understand the methodology.

• Many times the calculations for systems engineering and test engineering are based on actual
to date and perhaps Estimate to Completion (ETC). These numbers need to be compared to
historical data. Variations need to be identified and justified. Other questions on this topic
include the following:13

1. Is there sufficient analysis to justify why the actual effort to date is higher or lower than
anticipated?

2. How do any adjustment factors (such as effort variance factors and cost estimating rela-
tionship) on this project compare to those observed on the other analogous/similar pro-
grams which have been identified by the contractor and used to aid in the preparation and
validation of estimates on this program?

3. Is there sufficient analysis to compare the complexity and overall tasking of future work
to that already performed to justify the basis for estimate/comparison?

4. Check to see that all source data (such as the WBS) are clearly marked with an “as of”
date. This simple information also facilitates better historical analysis by the government
team in the development of independent cost estimates for future RFCs.

5. Is the continuous integration and test implementation on schedule? Is the cost as
planned? Is the automated test suite working as expected and being continuously im-
proved?

6. Is the challenge of testing being taken into account as far as the overall iteration schedule
is concerned?

13 Note that many of these questions are the same as one would ask for any traditional way of doing software

estimates. In fact, that’s the point. The “what” you do is still the same, “how” you do it is different. The “how” the
contractor does estimation in their agile environment is what the program office needs to understand.

CMU/SEI-2013-TN-031 | 28

7. How does the contractor account for extra integration effort required to keep any reused
software compatible to evolving versions of the program software?

4.1.2.3 Parametric Models

Parametric models (such as COCOMO, SEER-SEM) have long been used to aid in software engi-
neering estimation. This section addresses the use of such models by contractors engaged in agile
methods, to enable to the program office to gain understanding of the fidelity of estimates derived
using one or more of these models.14

• What, if any, parametric method was employed in the estimation process? Are available
Agile extensions to the basic models being used? What factors were employed, if any, to ad-
just estimates for variations in scope or other unique project attributes?

• How was the software productivity projected by parametric data (i.e., the outputs of paramet-
ric models) compared to the average productivities experienced by their team members on
similar programs:

1. What characteristics are used to determine similar programs?

2. What are these relevant and analogous programs?

• Were the outputs to average productivities experienced by their teams compared to the par-
ametric predictions?

4.1.3 Additional Resources

Many times data needed for estimating a RFC technical proposal is found in documents other than
the costing documents. The government program office personnel need to be familiar with any
data found in the SDP, MSBP, and SEMP that impacts estimation.

4.1.3.1 Software Development Plan

The SDP, whether iterative or not, provides ample information for a new software engineer on
the program to understand the work to be performed, how it is to be performed, who is responsi-
ble, etc. It should make appropriate use of cross-referenced documentation (e.g., SEMP, MSBP,
and the like) without repeating information. Some specific topics that are useful to include, when
agile or iterative methods are in use, include the following:

• How does the agile process deal with changing requirements?

• What aspects of the process will be automated, and how will this be accomplished?

• Explain how the contractor plans on aligning the traditional acquisition milestones (e.g.,
PDR, CDR, etc.), if used, with the increment and/or iteration milestones.

• If Earned Value (EV) is used, identify how the EV is applied for the iterations and/or incre-
ments (e.g., 0/100, 50/50, etc.) as well as what tasks are considered discrete tasks vs. level-

14 There are many references about using parametric models for agile projects. For a high level introduction, see

Agile Methods: Selected DoD Management and Acquisition Concerns,
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=9769

CMU/SEI-2013-TN-031 | 29

of-effort (LOE) tasks. All parties must agree on what “done” means! The government needs
to be involved in the planning of each iteration similar to rolling waves.

• Determine if the UOW definition used for the initial costing is different than that used for
RFC estimation.

• For ACAT I programs, make sure a Software Resources Data Report (SRDR) is included if
the SRDR provides software-related data to the government to improve the ability of the De-
partment of Defense to estimate the costs of software intensive programs. Data collected
from applicable projects describe the type and size of the software development, and the
schedule and labor resources needed for the development.

• The treatment of COTS, GOTS, NDI, and other reused software must be included in the
SDP. Consider: how will these products and their integration be tested? When will they be
integrated? How does the iteration or agile process account for COTS, GOTS, and NDI?

• If iterations are used, the progressive reviews should follow essentially a similar process you
would find for a PDW, CDW, ITR, and the like, but focused only on the potentially deliver-
able software for that iteration. Large programs will sometimes have a PDW followed by a
PDR, CDW followed by a CDR, etc. Where that particular system is utilized, the
PDW/CDW will be a very technical meeting (sometimes lasting a week depending on the
scope15) with each PDW/CDW providing part of the technical piece of the final PDR/CDR.
The PDR/CDR would be more of a PM-level review that includes a summarization of the
program to date as well as cost, schedule and any items from the prior “walkthrough” event
that needed to be briefed.

4.1.3.2 Master Software Build Plan

The Master Software Build Plan identifies the software development activities, artifacts, and In-
dependent Verification and Validation (IV&V) threads. It provides some amount of detail with
respect to the software build planning approach and how the various functions were mapped to the
blocks and subsequent iterations. The MSBP should do the following:

• demonstrate the use of continuous integration, automated check-in, and test automation as
part of the planning and implementation of the iterative or agile method

• provide plans for defining how software requirements and functionality are allocated to de-
velopment phases (blocks and iterations within blocks), thus defining the overall phased ap-
proach to building capabilities incrementally

• offer a detailed explanation of how the Master Software Build Planning process is performed
along with the participants, entry criteria, inputs, tasks, tools and methodologies, software
measures, outputs and exit criteria, and the definition of done

• summarize the life-cycle model (iterative-incremental life cycle) being used and how it re-
lates to the rest of the MSBP. It should also lay out the nominal “x” week iteration cycle
(where x is the number of weeks within each iteration).

• describe high-level block and iteration activities (within each incremental block). This in-
formation is similar to what you would see in any typical software development life cycle

15 The program reviewed for this technical note was large and averaged a week per these types of reviews. De-

pending on the size of the iteration and the amount of software, the review could be shorter.

CMU/SEI-2013-TN-031 | 30

(preliminary design, build planning, detailed design, code and unit test, unit integration and
test, software integration and test). Depending on the chosen agile method, the makeup of the
iteration activities will be some variant of this list.

• illustrate how the contractor divides the iteration across the various engineering activities as
well as the percentage of effort required by each engineering activity/discipline. This infor-
mation should pretty closely match that found in the contractor’s Control Account Manager
(CAM) book for the work activity (e.g., efforts, duration, costs). Keep in mind this type of
information is not usually something an agile team would deal with. Thus, negotiations on
the exact data including definitions of content may be required.

• ensure the government or its authorized representative has access for review of software
products and activities, from both the prime contractor and its subcontractors, in accordance
with the Statement of Work (SOW) and upon approval from program management. This ac-
cess should allow the PMO to attend the iteration and progressive walkthroughs, etc. to gain
insight into the current development status and progress of the program elements.

• describe the metrics used to provide insight into the program (including Software Earned
Value [EVMS] if applicable) and the use of Quantifiable Backup Data (QBD)16 for report-
ing.

4.1.3.3 Systems Engineering Master Plan

The Systems Engineering Management Plan should provide an understanding of how the progres-
sive reviews feed the programmatic reviews and vice versa. The SEMP should include the follow-
ing:

• clear definition and description of progressive technical reviews and audits. These should be
designed and implemented to minimize the risks associated with using this technique. Pro-
gram impacts of progressive technical reviews and audits must also be addressed.

• definitions of mechanisms and metrics for monitoring and controlling any movement of re-
quirements between/across iterations

• a description of how the Discrepancy Reports (DRs) feed back into each iteration/block be-
ing developed and the baseline controls should be provided

• detailed and straightforward definitions and descriptions of formal program-level reviews
found in any acquisition (SDR, PDR, CDR, etc.) and how they may be different in the itera-
tive environment

• a discussion of Joint Technical Reviews, the various reviews and the form(s) they may take.
As these are considered “joint reviews,” the government should be participating in them the
same as any other milestone review

16 QBD is referred to as “a detailed listing of tasks necessary to complete all scope in a work package during the

defined period of performance.” The package features weighting on each element. [Allerman 2009]

CMU/SEI-2013-TN-031 | 31

5 Conclusion

Agile and iterative methods are not orthogonal to the DoD acquisition life cycle. However, gov-
ernment and contractor teams must work together closely to ensure success when these methods
are employed on a DoD program.

Program offices need to be aware that there are differences in how to evaluate the proposed work
and subsequent change estimates that are created using iterative methods versus those developed
via traditional methods. While all the same types of activities still occur, they are accomplished in
a slightly different manner—notably, work products will exhibit varying levels of maturity
throughout the program life cycle, setting expectations for the agile or iterative environment and
process, changing the mode of communications to complement the agile method, and identifying
the specific milestones for measuring progress and accepting the system. If one uniformly applies
traditional review criteria to an iterative estimate, a great many disconnects and issues will occur.
Program office personnel need to take their current knowledge and use an “iterative-focused lens”
to interpret RFC responses. The authors have provided resources to help bridge the gap between
understanding traditional and iterative projects and provide a list of pertinent questions to answer
when doing a review of iterative technical proposals to a RFC.

While these same challenges may apply anytime during the life cycle of the program when tech-
nical evaluations occur, from pre-award through sustainment, no data was captured for other than
RFCs. This research will be addressed at a future date.

CMU/SEI-2013-TN-031 | 32

Appendix A Evaluation Question Checklist

For convenience, clarity and ease of reference, the questions raised in this technical note are re-
peated here in Table 4. A word of caution: When using these questions, make sure you are apply-
ing them with an iterative model in mind, since applying them while thinking traditional methods
will not result in the same answers. The Consideration column provides some additional guidance
on interpreting answers that may be offered in response to the questions.

Table 4: Questions to Ask When Evaluating Iterative Proposals

Question/Action Consideration / Impact

To understand and have confidence in the viabil-
ity of the estimates, the conversion between
UOW and SLOC counts must be documented
and made available to the government team.
Note that this is not the normal course of action
for an agile project but given the significant dif-
ference from business as usual some accommo-
dation needs to be made. Ensure the definition of
the terms do not change when document ver-
sions change. If so, find out why.

Consider if the fidelity of the estimate is the same level before and
after the conversion. If not, adjustments need to be made to pre-
serve the fidelity.
Look for a documented process that moves from the UOW esti-
mate to a SEER-SEM-like input. This process would help in elimi-
nating any fidelity issues caused by the conversion. It would also
put the estimates into a more familiar representation for the gov-
ernment personnel.

Ensure the effort range for UOWs is the same as
previous definitions.

If the effort range (number of days) for the UOWs shifts then an
explanation needs to be provided. Enquire if the shift is merely an
adjustment scale for staff management or if other downstream
calculations require revision. If the UOWs change, what is the
impact to the overall schedule? This could mean either more or
less work is being accomplished within the same timeframe
(which could mean a schedule increase or decrease).

Inquire how program-specific factors were devel-
oped. What method is used for estimation – story
points, planning poker, user story counts – make
sure it is clear how the contractor arrives at their
estimation. If prior experience is used as a factor,
determine how analogous that program is to
yours and if the methods used were the same.

This would further help the government understand the method-
ology and the details behind the basis of estimate.

Ask how the actual data is distributed across the
WBS to include the factors used to create any
estimates and how they were derived. Determine
if the WBS is being changed because of the
response to the RFC.

This would further help the government understand the method-
ology and know what WBS elements are changed due to the new
estimates.

What is used if historical experience or similar to
previous programs estimating data is not availa-
ble?

Typically, the contractor will use historical experience on similar
programs to provide a foundation for the estimates. If similar pro-
grams are not available, the government needs to understand
what is being used as the foundation for the estimate.

How does the contractor determine similarity of
other programs for purposes of compari-
son/historical data? Do they take into account
the instantiation of the agile method and any
variations specific to the other program which
may change the meaning of some items (done,
milestones, etc.)

This data is critical if the estimate is to be considered valid.

How does the contractor handle extraordinary
circumstances with historical experience such as
excessive rework?

This will also help determine the validity of the estimate and what
factors were or were not included.

CMU/SEI-2013-TN-031 | 33

Question/Action Consideration / Impact

What similar programs are considered as a basis
for historical estimates? Or will this vary greatly
based on the requirement/RFC?

This helps determine the validity of the estimate.

Anytime a contractor states they are using ad-
justment factors (or a series of factors), ask what
they are. Are any of these factors a result of
using this particular instantiation of the agile or
iterative method?

Specific data on what factors are being used will help the gov-
ernment understand the basis of estimate.

What characteristics are used to determine rele-
vant and analogous programs?

This information allows the government to understand how rele-
vant the other programs used really are to the program in ques-
tion. It also serves to help determine the level of fidelity the esti-
mates might have. For programs using agile or iterative methods,
it is extremely important that the same processes and techniques
are being employed on the current system, otherwise, errors can
be introduced.

What are the relevant and analogous programs
used by the contractor in the estimation process?

The answer to this question will allow the government to deter-
mine in their view if they agree that the programs are indeed rele-
vant and analogous. If they are, then the estimation data is more
appropriate to use. If they are not, then the government needs to
discuss the topic with the contractor so that both parties agree on
the scope of the tasking.

What does the contractor do if the assessment of
SEER (or other parametric model) projected
software productivity is analogous to other con-
tractor experience shows that execution is not
feasible?

This can point out an issue either with incorrect estimation or a
lack of understanding of the problem to be solved.

If the contractor uses terms like “high degree,”
ask what constitutes a “high degree.”

Terms like “high degree” are very subjective. A more definitive
term needs to be employed or this term needs to be well defined.
The definition should include a numeric definition of high degree
such as 50 percent or 80 percent or 95 percent fulfillment.

Ask for a description of the process for accurate-
ly estimating the effort required to implement
reuse software.

Answers to these questions will provide good background to un-
derstand the basis of estimate.

Ask for any guidelines or worksheets such as the
contractor’s software estimating guidelines and
any supporting tools.

These will provide additional insight into the estimation process
and allow the government to better judge the overall quality of the
estimate.

How does the contractor assess “differences in
scope” between reuse software and program
requirements?

May provide more insight into that process might provide addi-
tional clarity to the RFC process.

Ask what guidance is available for engineers
when using estimating ranges (for example,
adjustment factors based on complexity) to en-
sure consistent usage.

The will help the government ensure that the estimation process
is consistent across all estimators.

Ask for all formulas employed. This would provide completeness and minimize the likelihood of
misunderstanding.

When a similar program is cited, ask if the tech-
niques used on both programs are the
same/similar. If not, ask about notable differ-
ences.

This provides a more complete understanding for the government
of the basis of estimate.

Is the contractor using automated testing? If so,
to what extent?

This will help the government gain additional insight into the de-
velopment of test estimates and the impact of a particular RFC on
the test program. (Consider: does the change necessitate the
redevelopment of automated tests? How does this impact the
results of previous test runs, or the execution of tests on other
functionality unrelated to the RFC?)

How does the contractor minimize conflict in
resource utilization across iterations?

Careful and complete cross referencing will aid in the overall un-
derstanding of the estimation process.

CMU/SEI-2013-TN-031 | 34

Question/Action Consideration / Impact

Do estimates for supporting RFCs erroneously
double-count or unintentionally mask existing
problems/deficits?

Verifying the variables used to develop estimates will improve the
overall understanding of the estimation process and ensure that
the outputs are valid.

When dealing with vendor quotes within an RFC,
what criteria are used for realism, accuracy, and
completeness?

Provide additional insight to the government.

Determine if the work to be done in the RFC is
possible within one iteration or more. How will it
be reviewed?

The entire idea of major milestone reviews needs to be included
within any new costing. Are these reviews to be conducted rela-
tive to progressive reviews or at much larger system level re-
views? The level of maturity within the documentation will vary
depending on when it is reviewed.

CMU/SEI-2013-TN-031 | 35

Appendix B Acronyms

BCL Business Capability Life Cycle

CAM Control Account Manager

CDD Capability Development Document

CDR Critical Design Review

CDRL Contract Data Requirements List

CDW Critical Design Walkthrough

CMU Carnegie Mellon University

COTS Commercial-Off-The-Shelf

CPD Capability Production Document

CWBS Contractor Work Breakdown Structure

DAL Data Accession List

DBSMC Defense Business Systems Management Committee

DoD Department of Defense

DRs Discrepancy Reports

EMD Engineering and Manufacturing Development

ERAM Enterprise Risk Assessment Methodology

ETC Estimate to Complete

EV Earned Value

EVMS Earned Value Management System

FRP Full Rate Production

GOTS Government Off-The-Shelf

PBPR Progressive Build Planning Review

IBR Integrated Baseline Review

PCDW Progressive Critical Design Walkthrough

PIRR Progressive Integration Readiness Review

IMS Integrated Master Schedule

IOC Initial Operating Capability

IOT&E Initial Operational Test and Evaluation

PPDW Progressive Preliminary Design Walkthrough

IRB Investment Review Board

PSDW Progressive Segment Design Walkthrough

IRR Interim Readiness Review

PTRR Progressive Test Readiness Review

IV&V Independent Verification and Validation

JROC Joint Requirements Oversight Committee

LRIP Low Rate Initial Production

MAIS Major Automated Information System

MDAP Major Defense Acquisition Program

MDD Materiel Development Decision

MSBP Master Software Build Plan

NDI Non-Developmental Item

CMU/SEI-2013-TN-031 | 36

PDR Preliminary Design Review

PDW Preliminary Design Walkthrough

PMO Program Management Office

QBD Quantifiable Backup Data

RFC Request for Change

SBR Segment Block Review

SDP Software Development Plan

SDR Software Design Review

SEER System Evaluations and Estimation of Resources

SEI Software Engineering Institute

SEMP System Engineering Management Plan

SLOC Source Lines of Code

SOW Statement of Work

SPO System Program Office

SRDR Software Resources Data Report

TN Technical Note

TRR Test Readiness Review

UOW Unit of Work

WBS Work Breakdown Structure

CMU/SEI-2013-TN-031 | 37

References/Bibliography

URLs are valid as of the publication date of this document.

[Allerman 2009]
Allerman, Glen. Deliverables Based Planning, Denver PMI Symposium 2009.
http://www.slideshare.net/galleman/denver-pmi-symposium-2009

[Cohn 2006]
Cohn, Mike. Agile Estimating and Planning. Pearson Education Inc., 2006.

[DAU 2011]
Defense Acquisition University. Defense Acquisition Guidebook, 2011.
https://dag.dau.mil/Pages/Default.aspx

[DoD 2008]
Department of Defense. DoDI 5000.02, Operation of the Defense Acquisition System, 2 December
2008. http://www.dtic.mil/whs/directives/corres/pdf/500002p.pdf

[DoD 2011a]
Department of Defense. DTM 11-009, Directive-Type Memorandum (DTM) 11-009, Acquisition
Policy for Defense Business Systems (DBS), 23 June 2011.
https://dap.dau.mil/policy/Documents/2011/DTM%2011-009.pdf

[DoD 2011b]
Department of Defense. A New Approach for Delivering Information Technology Capabilities in
the Department of Defense, November 2010.
https://acc.dau.mil/adl/en-
US/412545/file/54776/New%20Acquisition%20Process_OSD%2013744-10%20-
%20804%20Report%20to%20Congress%202.pdf

[Lapham 2010]
Lapham, Mary Ann, Williams, Ray C., Hammons, Charles (Bud), Burton, Daniel, & Schenker,
Alfred. Considerations for Using Agile in DoD Acquisition (CMU/SEI-2010-TN-002,
ADA528647). Software Engineering Institute, Carnegie Mellon University, 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tn002.cfm

[Lapham 2011]
Lapham, Mary Ann, Miller, Suzanne, Adams, Lorraine, Brown, Nanette, Hackemack, Bart,
Hammons, Charles (Bud), Levine, Linda, & Schenker, Alfred. Agile Methods – Selected DoD
Management and Acquisition Concerns (CMU/SEI-2011-TN-002). Software Engineering Insti-
tute, Carnegie Mellon University, 2011.
http://www.sei.cmu.edu/library/abstracts/reports/11tn002.cfm

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

January 2014

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Agile Methods and Request for Change (RFC): Observations from DoD Acquisition Programs

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Mary Ann Lapham

Michael Bandor

Eileen Wrubel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2013-TN-031

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This technical note is the third in an SEI series on the adoption of lean and agile methods in the DoD. Agile topics in acquisition were in-
troduced in CMU/SEI-2010-TN-002 and CMU/SEI-2011-TN-002. This technical note extends the topics covered into the evaluation and
negotiation of technical proposals that reflect iterative development approaches that in turn leverage agile methods. This framework is
intended for use by government program office personnel who seek to understand evaluation approaches in this context. The infor-
mation and recommendations contained in this report result from observations of defense acquisition programs wherein contractors em-
ployed iterative methods such as Agile software development methodology (hereafter referred to as “agile”). Key questions for discus-
sion with the contractor are provided, along with agile perspectives on why certain items will be defined differently depending on whether
the contractor is using agile or iterative methods for software development. The intended audience for this paper includes any govern-
ment personnel who need to support or participate in negotiations with contractors for changes to the contract that is in place to develop
software using agile or iterative methods.

14. SUBJECT TERMS

acquisition, agile, life cycle

15. NUMBER OF PAGES

54

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Acknowledgments
	Executive Summary
	Abstract
	1	Introduction
	2	“New” View of Acquisition Life Cycle
	3	Performing Effective Technical Evaluation in the Iterative/Agile Environment
	4	Assessment of Contractor Estimating Methodology
	5	Conclusion
	Appendix A	Evaluation Question Checklist
	Appendix B	Acronyms
	References/Bibliography

